A Markov random field approach to spatio-temporal contextual image classification

نویسندگان

  • Farid Melgani
  • Sebastiano B. Serpico
چکیده

Markov random fields (MRFs) provide a useful and theoretically well-established tool for integrating temporal contextual information into the classification process. In particular, when dealing with a sequence of temporal images, the usual MRF-based approach consists in adopting a “cascade” scheme, i.e., in propagating the temporal information from the current image to the next one of the sequence. The simplicity of the cascade scheme makes it attractive; on the other hand, it does not fully exploit the temporal information available in a sequence of temporal images. In this paper, a “mutual” MRF approach is proposed that aims at improving both the accuracy and the reliability of the classification process by means of a better exploitation of the temporal information. It involves carrying out a bidirectional exchange of the temporal information between the defined single-time MRF models of consecutive images. A difficult issue related to MRFs is the determination of the MRF model parameters that weight the energy terms related to the available information sources. To solve this problem, we propose a simple and fast method based on the concept of “minimum perturbation” and implemented with the pseudoinverse technique for the minimization of the sum of squared errors. Experimental results on a multitemporal dataset made up of two multisensor (Landsat Thematic Mapper and European Remote Sensing 1 synthetic aperture radar) images are reported. The results obtained by the proposed “mutual” approach show a clear improvement in terms of classification accuracy over those yielded by a reference MRF-based classifier. The presented method to automatically estimate the MRF parameters yielded significant results that make it an attractive alternative to the usual trial-and-error search procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data

In this contribution, a hybrid multi-contextual Markov model for unsupervised near real-time flood detection in multi-temporal X-band synthetic aperture radar (SAR) data is presented. It incorporates scale-dependent, as well as spatio-temporal contextual information, into the classification scheme, by combining hierarchical marginal posterior mode (HMPM) estimation on directed graphs with nonca...

متن کامل

A Review of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information

This paper reviewed major remote sensing image classification techniques, including pixel-wise, sub-pixel-wise, and object-based image classification methods, and highlighted the importance of incorporating spatio-contextual information in remote sensing image classification. Further, this paper grouped spatio-contextual analysis techniques into three major categories, including 1) texture extr...

متن کامل

Unsupervised segmentation of low clouds from infrared METEOSAT images based on a contextual spatio-temporal labeling approach

The early and accurate segmentation of low clouds during the night-time is an important task for nowcasting. It requires that observations can be acquired at a sufficient time rate as provided by the geostationary METEOSAT satellite over Europe. However, the information supplied by the single infrared METEOSAT channel available by night is not sufficient to discriminate between low clouds and g...

متن کامل

Contextual Reclassification of Multispectral Images: A Markov Random Field Approach

This work presents methods for multispectral image classification using the contextual classifiers based on Markov Random Field (MRF) models. Performance of some conventional classification methods is evaluated, through a Monte Carlo study, with or without using the contextual reclassification. Spatial autocorrelation is present in the computer-generated data on a true scene. The total misclass...

متن کامل

Improving Multispectral Image Classification by Using Maximum Pseudo-Likelihood Estimation and Higher-Order Markov Random Fields

In this paper we address the multispectral image contextual classification problem following a Maximum a Posteriori (MAP) approach. The classification model is based on a Bayesian paradigm, with the definition of a Gaussian Markov Random Field model (GMRF) for the observed data and a Potts model for the a priori knowledge. The MAP estimator is approximated by the Game Strategy Approach (GSA) al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003